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Abstract.    A causal relationship between mid-latitude magnetosheath energetic 
ions and bow shock magnetic geometry was previously established for ion energy 
up to 200 keV/e for the May 4, 1998, storm event.  This study demonstrates that 
magnetosheath ions with energies above 200 keV up to 1 MeV simply extend the ion 
spectrum to form a power-law tail. Results of cross-correlation analysis suggest that 
these ions also come directly from the quasi-parallel bow shock, not the magnetosphere. 
This is confirmed by a comparison of energetic ion fluxes simultaneously measured in 
the magnetosheath and at the quasi-parallel bow shock when both regions are likely 
connected by the magnetic field lines.  We suggest that ions are accelerated at the 
quasi-parallel bow shock to energies as high as 1 MeV and subsequently transported 
into the magnetosheath during this event. 



1. Introduction 

Energetic ions of solar wind origin with energies up to ~1 MeV are frequently 
observed in the polar cusp region. It was hypothesized that local acceleration in the 
cusp is responsible for these cusp energetic ions (CEPs) [e.g., Chen et al, 1998]. This 
view was challenged by Chang et al. [1998] who showed that cusp energetic ion spectra 
(< 300 keV/e) matched very well with a large body of bow shock ion spectra. Chang et 
al. [1998] proposed that solar wind ions are accelerated at the quasi-parallel bow shock 
and subsequently transported into the cusp along interconnected magnetic field lines. 
Within this framework, bow shock accelerated ions should appear in the mid-latitude 
dayside magnetosheath upstream from the cusp. 

This prediction has been confirmed in a recent study of energetic ions observed 
by Polar at the above magnetosheath region during the May 4, 1998, magnetic storm 
event [Chang et al, 2000]. In this event, magnetosheath energetic ion fluxes of solar 
wind origin showed variations as large as 2 orders of magnitude. As expected in the 
bow shock model, these ion fluxes were anticorrelated with the interplanetary magnetic 
field (IMF) cone angle at the shock.  On the other hand, He+ fluxes presumably of 
ionospheric origin were quite steady throughout the magnetosheath interval and were 
not correlated with the cone angle. These results suggest that magnetosheath energetic 
ions of solar wind origin are extracted from the diffuse ions at the quasi-parallel bow 
shock [e.g., Ipavich et al., 1981] and those of ionospheric origin most likely result from 
the magnetospheric leakage [e.g., Sibeck et al, 1987], consistent with early findings at 
the low latitude magnetosheath [e.g., Fuselier et al, 1991]. 

Delcourt and Sauvaud [1999] show that magnetospheric energetic particles of a few 
hundreds of keV can leak from the equatorial trapping region at the dayside plasma 
sheet into the cusp; this injection is favored during substorms. These particles may 
further escape into the magnetosheath along reconnected magnetic field lines [e.g., 
Speiser et al, 1981; Scholer et al, 1981]. General views of the source of magnetosheath 
energetic ions remain the upstream diffuse ions [e.g., Gosling et al, 1978; Bonifazi and 
Moreno, 1981; Fuselier et al, 1991] and magnetospheric leakage near the equatorial 
magnetopause [e.g., Sarris et al, 1976; Croley et al, 1986; Sibeck et al, 1987]. 

In this paper we continue the work of Chang et al. [2000] (hereinafter referring to 
paper I) on the May 4 storm event and perform a similar cross-correlation analysis for 
ions with energies from 200 keV to 1 MeV, beyond the ion energies in the previous 
work. Energetic ion fluxes are compared in the solar wind (Wind), quasi-parallel bow 
shock (Interball-Tail), and mid-latitude magnetosheath (Polar). In this way concurrent 
measurements of energetic ions in the magnetosheath and the bow shock source regions 
are provided for the first time in the literature. Our analysis indicates that ions were 
accelerated up to an energy as high as 1 MeV at the shock and subsequently transported 



into the magnetosheath. This result is in direct contradiction with the claim by Chen 
and Fritz [1999] that solar wind ions are locally accelerated to MeV in the cusp and 
then escape into the magnetosheath during this event. Results of ion flux comparison 
in the magnetosheath and at the bow shock confirm our view of bow shock source of 
magnetosheath energetic ions [Chang et ai, 2000]. It then further supports our bow 
shock model of CEPs [Chang et ai, 1998]. 

2. Observations 

In addition to the data sets used in paper I, namely ion data from Polar/Hydra 
[Scudder et ai, 1995], the Charge and Mass Magnetospheric Ion Composition 
Experiment (CAMMICE) (refer to Wilken et al. [1992] for the MICS detector), magnetic 
field data from the Magnetic Field Experiment (MFE) [Russell et al, 1995], IMF data 
from the Magnetic Field Investigation (MFI) [Lepping et al, 1995], and solar wind 
data from the Solar Wind Experiment (SWE) [Ogilvie et al, 1995] both onboard the 
Wind spacecraft, we include energetic ions up to 1 MeV observed upstream in the solar 
wind, bow shock, and magnetosheath in this work. Energetic ions in the solar wind 
are measured by two detectors of the 3-D Plasma and Energetic Particle instrument 
(3DP) [Lin et al, 1995] onboard Wind, the ion electrostatic analyzer PESA-H (~5-28 
keV) and the semi-conductor detector telescopes (SST) open detector (~71-1017 keV). 
Energetic ions in the upstream region of bow shock are acquired with the lp detector 
of the DOK-2 instrument on Interball-Tail [Lutsenko et al, 1995; Kudela et al, 1995]. 
The detector covers an energy range from ~21 to 821 keV in 57 logarithmic steps. 
However, only the energy channels without the background interference are selected for 
this study (~35-620 keV). In the magnetosheath the Imaging Proton Sensor (IPS) of the 
Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) measures 
ion energy from ~14 to 1500 keV for a nearly full angular coverage [Blake et al, 1995]. 
For the purpose of constructing a full energy spectrum for magnetosheath ions, data 
used in this study are only extracted from the 90° sensor head whose look direction is 
perpendicular to the Polar's spin axis to match those of CAMMICE and selected Hydra 
detectors. Data sampled within the sectors that contain the reflected earthlight are 
excluded. All the ion data presented in this paper are total ion measurements assuming 
H+ response unless specified otherwise for some channels of the CAMMICE instrument. 

2.1. Magnetosheath Ion Spectrum 

It had been identified in paper I from the Hydra ion and electron density, 
temperature, and bulk flow data and electron angular distribution and MFE magnetic 
field data, that the Polar spacecraft traversed the mid-latitude dayside magnetosheath 
region for more than three hours (~0840-1200 UT) during the May 4, 1998, storm 



event. As an example, Figure 1 shows solar wind dynamic pressure from Wind/SWE 
and Polar/MFE magnetic field and Hydra ion data from 1120 to 1220 UT. The solar 
wind dynamic pressure is lagged by 34 min to align the discontinuity at ~1203 UT in 
all the four panels. This lag is nearly identical to our previously estimated solar wind 
and shocked solar wind propagation time (33 min in Figure 5 of paper I). Before 1203 
UT, Polar was in the magnetosheath as the magnetopause was compressed by the large 
dynamic pressure.  MFE magnetometer detected weak magnetic (B) fields and large 
amplitude low frequency waves (5B ~ B) Hydra detectors measured highly skewed 
ion fluxes, toward -B before 1153 UT and +B after. This reversal occurred as the x 
and z components of B changed sign. As expected, these magnetosheath ions show a 
strong tailward flow. After the dynamic pressure reduced at 1203 UT, Polar crossed 
the magnetopause and entered a magnetospheric region on lobe field lines. This is 
suggested by the measurements of large, steady B field from MFE, and imperceptible 
ion precipitation and weak ion outflows from Hydra. Later at 1212 UT, Polar entered 
the plasma mantle, detecting ion precipitation with the typical characteristic of the 
energy-latitude dispersion [e.g., Reiff et ai, 1977]. 

The magnetosheath ion distribution is highly skewed in the spacecraft frame because 
of the flow. As demonstrated in Figure 2, the ion distribution function antiparallel to 
B consists of a Maxwellian thermal component and a suprathermal tail. The peak of 
the distribution function appears at ~390 km/s. In contrast, ion distribution function 
parallel to B is about 2 orders of magnitude smaller than the antiparallel one. Both 
distributions roughly mirror each other about the ion velocity at the peak distribution, 
reflecting a superposition of a flowing Maxwellian and a suprathermal tail distribution 
as it would be expected for the undisturbed magnetosheath plasmas. Therefore, ion 
distribution is symmetric in the first approximation in the rest frame of plasmas. This 
type of distribution is persistently observed throughout the magnetosheath intervals 
within 0840-1200 UT. 

Figure 3 depicts the average ion spectrum in the magnetosheath intervals within 
0842-1158 UT from Hydra, CAMMICE, and CEPPAD. The Hydra and CAMMICE 
spectra are reproduced from Figure 6 of paper I. Data from these instruments presented 
here are well calibrated for this event as demonstrated by the good matches among the 
individual spectral curves. The composite spectrum is continuous with a spectral break 
occurring at about 40 keV. The spectral shape for the CAMMICE energetic ions from 
~40 to 200 keV is best described by a Maxwellian or exponential function. As shown by 
the good agreement between the curve and data points in Figure 3 for ions within this 
energy range, the latter function yields an excellent fit. However, CEPPAD ions with 
energies above ~200 keV do not agree with this fit. They simply extend the CAMMICE 
spectrum to form an energy power-law tail with a spectral index of 3.9, illustrated by 
the straight line fitting the last six data points. The spectral shape of energetic ions 
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Figure 1. From top to bottom: solar wind dynamic pressure from Wind/SWE, mag- 
netic field magnitude from Polar/MFE, Hydra ion energy-time spectrogram showing ion 
differential energy flux parallel to B and antiparallel to B from 1120 to 1220 UT on May 
4, 1998. Two colors in the spectrogram that are not present in the scale indicate data 
gaps (white) and ion fluxes above the maximum value in the scale (the brightest gray). 
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CEPPAD averaged over the interval 0842-1158 UT excluding the solar wind intervals on 
May 4, 1998. The composite spectrum is continuous with a spectral break at ~40 keV 
(vertical dashed line). CAMMICE ions from ~40 to 200 keV is fitted by an exponential 
function and CEPPAD ions from ~200 keV to 1 MeV is fitted by a power law. 



becomes obvious when their spectrum is presented in the formats in Figure 4. From left 
to right, the straight lines represent a Maxwellian, exponential (both covering ~40-200 
keV), and power-law distribution (~200-1000 keV), respectively. These results indicate 
that the energetic tail of magnetosheath ion spectrum from ~40 keV to 1 MeV is 
best described by a K distribution [Vasyliunas, 1968], as shown in the middle panel of 
Figure 4 by the dashed curve with K = 4. Ions within this energy range plausibly come 
from one source region. 

2.2. Cross Correlation Analysis 

Figure 5 presents CEPPAD ion differential number fluxes measured at two energy 
channels, 198.0 and 543.0 keV, during the magnetosheath intervals within 0840-1200 
UT. Both channels show similar temporal variations which can be as large as two 
orders of magnitude. An opposite variation appears in the IMF cone angle 9BX from 
Wind/MFI when it is lagged by 36 min as illustrated by the thin curve. This suggests 
that ion fluxes at both energy channels are anticorrelated with 9ßx- As we noted in 
paper I, 9Bx used here for the cross-correlation analysis serves as a proxy for the actual 
9ßn that positions Polar in the foreshock geometry. 

A cross-correlation analysis was performed between each of the above two flux 
profiles and the 9BX measured at the Wind spacecraft assuming a lag ranging from 0 
to 60 min with an increment of 1 min. Results are given in Figure 6. Both correlation 
curves are very similar. They both demonstrate a trend that correlation coefficient 
monotonically decreases toward the peak as the assumed time lag increases from 0 
toward 36 min and then monotonically increases toward 0 as the lag increases toward 
60 min. The peak correlation coefficient and the corresponding lag are (—0.67, 34 min) 
and (—0.62, 37 min) for 198 and 543 keV ions, respectively. These features of unique 
peak correlation at a lag of ~35 min are quite consistent with results from our previous 
analysis of the CAMMICE energetic ions {40-200 keV) presented in paper I. 

To demonstrate that the correlation relationship between ion fluxes and 9Bx 

depends on the ion energy, we perform the cross-correlation analysis for all the CEPPAD 
ion energy channels. Results are presented in Figure 7. Correlation curves are gray-scale 
coded according to the ion energy expressed in the gray-scale bar on the right of the 
figure. It is noted that there are two classes of curves. Three curves for ion energy below 
30 keV belong to the first type that show null correlation regardless of the value of the 
assumed time delay. The rest of the curves for ion energy between 30 keV and 1 MeV 
belong to the second type, resembling those in Figure 6. They all show a unique peak 
at about the same assumed lag. 

The peak correlation coefficient r0 and its corresponding time lag At0 are plotted 
in Figure 8 as a function of ion energy. As shown by the thick line in the top panel, 
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Figure 4. Energy spectrum of magnetosheath energetic ions (~40-1000 keV) extracted 
from Figure 3. Lower energy ions (~40-200 keV) can be fitted by a Maxwellian (left) or 
an exponential function (middle) and higher energy ions (~200-1000 keV) are fitted by 
a power law (right), where jN in (cm2 s sr keV)-1 and E in keV. The dashed curve in 
the middle panel represents a K distribution with K = 4. 
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Figure 6. Correlation coefficients calculated at each time lag for 6ßx assumed from 0 to 
60 min for 198 keV ions (thick line) and 543 keV ions (thin line). 

12 



1.0 

§  0.5- 

1.0 

I  I  I  I  I  I  I  I   I  I  M Ii iii i r i ii 

III II i l-XJ 1 ■ ■ * i ■ i ■ ■ ■ i i i 

0        10       20       30       40 
Time Lag (min) 

50       60 

E (keV) 

1071.0 
762.0 
543.0 
387.0 
277.0 
198.0 
142.0 
103.0 
75.9 
55.9 
41.4 
30.3 
22.6 
17.5 
13.9 

Figure 7. Correlation coefficients for all the CEPPAD ion energy channels that are 
indicated in the gray-scale bar. Two classes of curves are clearly present. One shows null 
correlation and the other shows anticorrelation with only one peak. 

13 



1.0 

0.5 - 

-1.0 

1111    'I   TT^^^^^^^^^^^^^^^^T"-1   I'"I I 

++j 1—I   I I 1 lll| 1—I   I I I lll| 

45 

40 - 

35 h 

30 

25 

20Lj_ 
10 

li. -I I   I I I III 

100 
E (keV) 

1000 

Figure 8. Peak correlation coefficient r0 (top panel) and the associated time lag At0 

(bottom panel) as a function of ion energy E for CEPPAD ion (thick line) and CAM- 
MICE He+ (thin line). A sharp transition from weak correlation to strong anticorrelation 
appears at the CEPPAD energy channel of 41.4 keV. At0 for the CEPPAD ion energy 
above 41 keV ranges from 34 to 37 min with an average value of 35.5 min. 

14 



a sharp transition from no correlation to strong anticorrelation appears at the energy 
channel of 41.4 keV for the CEPPAD ions. This energy threshold for anticorrelation is 
the same as the spectral break energy of the magnetosheath ion spectrum presented in 
Figure 3. All the ion fluxes above this energy are anticorrelated with 6Bx with a proper 
time delay. As shown in the bottom panel, At0 for CEPPAD ions above the energy 
threshold varies within 34-37 min with an average value of 35.5 min. However, it is 
noted that r0 increases toward 0 as the ion energy gets higher. This may be due to the 
reduced signal to noise ratio in these higher energy channels. Nevertheless, both the 
transition energy and the average time delay derived in the CEPPAD energetic ion data 
are nearly identical to those derived from the CAMMICE ion data (41.1 keV and 36 
min) in paper I. 

For comparison, r0 and At0 for CAMMICE He+ ions presented in paper I are also 
plotted in Figure 8. The He+ energy in this figure represents the lower bound of the 
energy range for the total He+ flux integration and He+ curves in this figure would 
closely reflect the curves for differential energy flux at each energy channel as described 
in paper I. Presumably of the ionospheric origin, He+ demonstrates a completely 
different behavior. Unlike the CAMMICE and CEPPAD energetic ion fluxes, energetic 
He+ fluxes were quite steady in the magnetosheath interval (see Plate 1 of paper I). He+ 

shows inconsistent r0 and At0 without any correlation with 9Bx throughout the energy 
range, ~17-100 keV. Therefore, CEPPAD energetic ions and CAMMICE He+ would 
appear to have come from distinct source regions, or at least via different paths if from 
the same source region. 

2.3. Bow Shock Ion Spectrum 

During some periods of this magnetosheath event, Interball-Tail was located in the 
foreshock region upstream from the quasi-parallel bow shock. In particular, Interball 
was at times very close to, if not exactly at, the source region of magnetosheath energetic 
ions observed by Polar that we previously proposed (see paper I and also Chang et al. 
[1998]). A comparison of Interball and Polar ion spectra can potentially falsify our bow 
shock source hypothesis and is now the focus of our analysis. 

Because the energetic particle data from DOK-2 on Interball was not transmitted 
to the ground before 11 UT, we are restricted to the last one hour interval of the 
magnetosheath event for the flux comparison. For about 41 min from 1101 to 1142 UT, 
Interball was upstream from the quasi-parallel bow shock as illustrated in Figure 9. On 
the left, the figure shows the xz projections of the bow shock, magnetopause, Interball 
and Polar orbits, and IMF and on the right, the yz projections of the dayside portion 
of the bow shock before the terminator, spacecraft orbits, and IMF. This interval is 
selected for its relatively steady IMF and solar wind conditions so that bow shock 
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Figure 9. Left: projection of the bow shock (BS), magnetopause (MP), and Polar 
and Interball orbits onto the xz plane, right: the yz projections of the dayside portion 
of the bow shock before the terminator, spacecraft orbits, and IMF. The bow shock 
surface is obtained from the Fairfield [1971] model scaled by the solar wind dynamic 
pressure and the magnetopause surface is from the Shue et al. [1998] model. Contours of 
constant 9Bn shown on the right figure are calculated using a nearly radial, average IMF 
(17.2,3.8, -3.1) nT with 6Bx < 20°. 
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geometry and location would remain similar. The bow shock surface is calculated using 
Fairfield [1971] model scaled by the solar wind dynamic pressure and the magnetopause 
surface is calculated from the Shue et al. [1998] model. All the solar wind and IMF 
parameters used in these models are the average Wind measurements over the interval 
corrected by the propagation time. As shown in both figures, Interball was upstream 
from the quasi-parallel bow shock (the shaded region on the right) with an average 6Bn 

of 22° and an average distance of 5.8 RE along the magnetic field line to the shock. 
Polar was just outside the model magnetopause in the magnetosheath. We note that 
Polar was in the undisturbed magnetosheath according to the plasma and magnetic 
field data, i.e., Polar was located farther into the magnetosheath than that suggested by 
the model. Both spacecraft were located in the postnoon sector at close longitudes. On 
the basis of the general plasma flow in the solar wind, magnetosheath, magnetosphere, 
and ionosphere [e.g., Spreiter and Stahara, 1985; Reiff and Burch, 1985], we suggest 
that magnetosheath magnetic field geometry during this interval is similar to those in 
Figure 11 of paper I and Figure 5 of Chang et al. [1998], in which cases magnetosheath 
magnetic field direction is reversed but magnetic field lines and the topology remain 
similar. Thus Polar is likely to be very well connected to Interball by magnetic field 
lines. 

Using the lag corrected IMF and solar wind measurements from Wind and the 
Fairfield bow shock model, we calculated bow shock distance along magnetic field lines 
and 9Bn associated with Interball for the above 41-min upstream interval.  Results 
are presented in Figure 10.  The estimated bow shock distance ranges from 5 to 7 
RE while 9Bn ranges from 11° to 38°. As expected under steady IMF and solar wind 
conditions, most of the time these two quantities are steady around 6 RE and 22°. 
Therefore, the average values of bow shock distance (5.8 RE) and 6Bn (22°) are very 
good representations of the instantaneous values throughout this upstream interval. 

For a direct comparison, energetic ion spectrum from Interball/DOK-2 and 
magnetosheath ion spectrum from Polar both averaged over 41 min from 1101 to 1142 
UT are plotted in Figure 11. During this interval, Polar observed very intense energetic 
ion fluxes (see for example CEPPAD ion fluxes at both energy channels in Figure 5). 
Once again the magnetosheath spectrum comprising Hydra, CAMMICE, and CEPPAD 
measurements shows very good agreement among the individual spectra. Its spectral 
shape is very similar to the one averaged over the interval more than 3 hours long 
presented in Figure 3. Both spectra are continuous with a spectral break occurring at 
the same energy (~40 keV). The magnetosheath energetic ion spectrum during this 
upstream event also shows a Maxwellian or exponential distribution for lower-energy 
energetic ions (~40-200 keV) and a power-law distribution for higher-energy ions 
(~200-1000 keV) with a spectral index of 4.1.  Therefore, this spectrum from ~40 
keV to 1 MeV can be described by a K distribution.  Similarly, the energetic ion 
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Figure 10.  Bow shock distance along magnetic field lines (heavy line) and 6ßn (thin 
line) associated with Interball during the interval of 1101-1142 UT. 
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Figure 11. Average magnetosheath ion spectrum from Polar/Hydra, CAMMICE, and 
CEPPAD and foreshock ion spectrum from Interball/DOK-2 for the interval 1101-1142 
UT on May 4, 1998. CAMMICE ions from ~40 to 200 keV is fitted by an exponential 
function. CEPPAD ions from ~200 keV to 1 MeV is fitted by a power law. 
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spectrum observed by Interball/DOK-2 upstream from the bow shock also shows a «-like 
distribution. However, these upstream energetic ion fluxes generally do not agree with 
the magnetosheath fluxes. Disagreement gradually magnifies toward lower ion energy. 
Nonetheless, above 200 keV bow shock ion fluxes are close to the magnetosheath values 
and their spectral shape is similar to the magnetosheath's. In spite of the disagreement, 
this result does not rule out the bow shock source of magnetosheath energetic ions as 
we discuss below. 

It is known that the upstream diffuse ion fluxes decrease exponentially along the 
magnetic field lines away from the shock [e.g., Ipavich et al, 1981; Lee, 1982]. This 
e-folding distance generally depends on ion energy. Following Figure 7 of Trattner et al. 
[1994] and assuming that e-folding distance scales with solar wind velocity, we can then 
estimate energetic ion fluxes at the shock. For the simplest assumption, we assume that 
the statistics of Trattner et al. [1994] applys to the average solar wind condition and 
e-folding distance is inversely proportional to the solar wind speed as suggested by the 
nature of diffusive transport for ions upstream of quasi-parallel bow shock [Lee, 1982]. 
The resulting e-folding distance for this event is plotted in Figure 12. It ranges between 
4 and 6 RE for the Interball energy channels used in this study. For the average bow 
shock distance of 5.8 RE mentioned above, the required correction is approximately 
1.4-1.0 e-foldings, with the lowest energy ions corrected the most and the highest energy 
ions the least. 

The corrected spectrum (or the estimated ion spectrum at the bow shock surface) is 
presented in Figure 13. This bow shock ion spectrum and magnetosheath energetic ion 
spectrum are nearly indistinguishable. Although the bow shock spectrum ends at about 
600 keV (the high energy limit of useful detection), bow shock energetic ions follow the 
spectral trend of the magnetosheath spectrum with very high precision. With the bow 
shock and magnetosheath regions connected by magnetic field lines during this event, 
this result implies that between the bow shock and magnetosheath energetic ions one is 
the source of the other. ., 

As to the acceleration region, we have also included the energetic ion measurements 
from Wind/3DP in the solar wind about 200 RE upstream from the bow shock in 
Figure 13 to check the fluxes of solar energetic particles. According to the bulk speed of 
the solar wind, the ion spectrum presented here is lagged by 29 min. It is expected that 
this lag is smaller for energetic ions. However, because energetic ion fluxes were quite 
steady in the solar wind during the entire magnetosheath event, the 3DP ion spectrum 
presented here is representative. Both the solar energetic ion fluxes and magnetosheath 
energetic ion fluxes are not correlated as suggested by the results from cross-correlation 
analysis (results not shown).  In addition, from the large disagreement between the 
ion spectra in the solar wind and at the bow shock, one can immediately draw the 
conclusion that ion acceleration must take place downstream of the Wind spacecraft. 
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correction as a function of ion energy. 
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2.4. Total Energy 

In addition to the excellent match between the magnetosheath and bow shock ion 
spectra shown in Figure 13, the magnetosheath ion spectra observed by Polar during 
the above upstream event from 1101 to 1142 UT also show characteristics of upstream 
diffuse ions. As demonstrated in Figure 14, energetic ion spectra for CAMMICE H+, 
He+2, and 0>+2 are organized very well by energy per charge (left panel) not the total 
energy (right panel). In the left panel of Figure 14, spectra of all three species show a 
spectral break at about 40 keV/e. It is noted that the flatness in the He+2 and 0>+2 

spectra below ~5 keV/e reflects poor efficiency of CAMMICE/MICS for these two 
species at low energy channels. The spectral break energy is higher than the typical 
e-folding energy at ~20 keV/e in the diffuse ion events [e.g., Lee, 1982]. Nonetheless, 
this is expected because of the large shock Alfven Mach number (~7.1) and unusually 
high solar wind speed (~745 km/s) in this event [Scholer et al, 1999]. The spectral 
shapes of these three ion species from 40 keV/e to the CAMMICE maximum detection 
energy (~200 keV/e) are Maxwellian or exponential, consistent with early reports of 
upstream events in this energy range [e.g., Ipavich et al, 1981]. 

For the purpose of comparing ion fluxes from Hydra, CEPPAD, and DOK-2 
instruments which do not distinguish ion masses, we have been using total ion 
measurements from the DCR channel (time-of-flight measurements of all ion species) 
of the CAMMICE MICS detector. This detector also has a H+ channel (time-of-flight 
and energy measurements) that excludes other species.  The energy of detection for 
this channel is from 5.6 to 193.4 keV. H+ spectrum from this channel measured in the 
above interval is nearly identical to the DCR-H+ spectrum presented in Figure 14. 
This indicates that contributions of other species to the total ion measurements up 
to 200 keV are negligible. Another estimate of heavy ion contribution to the DCR 
channel is provided by the direct event (DE) data from MICS. The DE data are detailed 
measurements from a subset of the ions detected. They are transmitted to the ground 
and used to verify the correctness of the onboard ion sorting algorithms. Examination 
of the DE data shows that the fluxes of oxygen ions measured during this event are 
consistent with the fluxes shown in the left panel of Figure 14 and that the DCR 
response is dominated by H+ at all energy channels. 

There is a question of whether energetic ions from 200 keV to 1 MeV detected by 
CEPPAD instrument are heavy ions since a 200 keV/e 0+6 has a total energy of 1.2 
MeV. As shown in the right panel of Figure 14, He"1"2 spectrum from 200 to 400 keV 
agrees very well with the corresponding CEPPAD ion spectrum and 0>+2 (assuming 
O"1"6) spectrum shows a trend close to CEPPAD ion spectrum from 600 keV to 1 MeV. 
At the first glimpse, the exponential distributions of He+2 and 0+6 seem to comprise 
the power-law spectrum of CEPPAD ions above 200 keV. However, as shown in the 
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Figure 14. Magnetosheath ion spectrum extracted from Figure 11 with the addition of 
the CAMMICE/He+2 and 0>+2 (assuming 0+6) spectra in energy per charge (left) and 
total energy (right) during the upstream event, 1101-1142 UT. All the curves represent 

exponential distributions. 
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figure, at lower energies from ~5 to 40 keV He+2 and 0+6 fluxes can also account for 
CAMMICE DCR-H+ and CEPPAD ion fluxes at the corresponding energies.  Yet, 
CAMMICE DCR and CEPPAD ion measurements were most likely H+ within this 
energy range because spectra from the CAMMICE H+ channel, DCR channel, and 
CEPPAD IPS agree well as described above. Likewise, since we do not know how the 
CEPPAD IPS detector responds to different ion species at different energies, we cannot 
argue that CEPPAD detector simply detected He+2 and 0+6 at energy channels above 
200 keV for this event. This issue can be resolved with composition measurements above 
200 keV/e. Unfortunately, this is beyond the capability of Polar instruments. 

3. Discussion and Conclusion 

In our previous work on the CAMMICE energetic (up to 200 keV/e) ions for this 
May 4, magnetic storm event, we suggested that energetic ions of solar wind origin 
(H+, He+2, 0>+2) observed at the mid-latitude dayside magnetosheath were accelerated 
at the quasi-parallel region of the bow shock and those of ionospheric origin (He+) 
observed at the same location were accelerated in the magnetosphere. This is supported 
by the following evidence with figures within parentheses referring to paper I except 
noted otherwise. 

1. Energy spectra of the above three solar wind ion species are organized very well 
by energy per charge not the total energy. They all show a spectral break at the same 
energy at about ~40 keV/e. Their spectral shape within the energy range of 40 to 200 
keV/e is Maxwellian or exponential, similar to the spectral shape of bow shock diffuse 
ions [e.g., Ipavich et ai, 1981] (Figure 6, also Figure 14 in this paper). 

2. Energetic electron and ion composition changed as Polar crossed the 
magnetopause near the equator and at the mid-latitude.  Inside the magnetosphere, 
Polar detected intense energetic electrons, H+, He+, and 0<+3 and relatively weak He+2 

and 0>+2. In the-magnetosheath, Polar detected intense energetic H+, He+2, and 0>+2, 
nearly no energetic electrons, 0<+3, and very weak He+ (Plate 1). 

3. Intense magnetosheath energetic ions all showed anisotropy toward the 
magnetopause and a strong tailward flow away from the bow shock (Figure 9). 

4. The three magnetosheath energetic ion fluxes of solar wind origin showed large 
temporal variations as high as two orders of magnitude. Fluxes at energies above the 
energy of the spectral break (~40 keV/e) are anticorrelated with the IMF cone angle 
with a time delay consistent with the solar wind propagation time and the acceleration 
time for shock acceleration. This correlation relationship disappeared for ion fluxes at 
energies below this energy threshold. On the contrary, He+ fluxes were relatively steady 
throughout the entire magnetosheath interval. They are not correlated with the cone 
angle at all energies (Plates 1 and 2, Figures 7 and 8). 
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5. When the intensities of the above three solar wind ion species were high, Polar 
was connected to the quasi-parallel, dayside region of the bow shock by magnetic field 
lines. When their intensities were low, Polar was disconnected from the above region 
(Figure 11). 

6. The ion spectrum observed at the quasi-parallel bow shock by Interball/DOK-2 
agreed very well with the magnetosheath ion spectra simultaneously observed by 
Polar/CAMMICE and CEPPAD as demonstrated in Figure 13. 

A simple explanation for the above results is that the intense magnetosheath 
energetic ions (up to 200 keV/e) of solar wind origin are accelerated at the dayside 
quasi-parallel bow shock by the Fermi mechanism [e.g., Scholer et al, 1980; Lee, 
1982; Ellison, 1985; Fuselier et al., 1991]. Intensities of these ions change as the IMF 
orientation changes so that Polar is magnetically connected or disconnected to this 
shock region.   Solar wind ions accelerated at the quasi-parallel shock are directly 
transported along field lines to the mid-latitude magnetosheath when two regions are 
connected (see Figure 11 of paper I). The nearly steady, weak He+ ions are mostly from 
the magnetospheric leakage [e.g., Croley et al, 1986; Sibeck et al., 1987; Kudela et al, 
1992; Christon et al, 1994]. This leakage process invokes diffusive transport and finite 
larmor radius effect across the equatorial magnetopause. The intensity of the leakage is 
more or less related to the substorm activities not the bow shock magnetic geometry. 
Because Polar was on field lines that threaded through the equatorial magnetosheath 
near the magnetopause all the time regardless of the IMF orientation, He+, leaking from 
the magnetosphere could reach Polar along field lines persistently.  Since He+ is less 
than 1% of the total energetic ion population, magnetospheric leakage can only account 
for a small fraction of the magnetosheath energetic ions detected by the CAMMICE 
instrument. 

Other possible explanations for the Polar observations of magnetosheath energetic 
ions include injection of magnetospheric energetic ions and local acceleration in the cusp 
that recently appear in the literature. Several groups using single particle simulations 
have shown that energetic ions trapped on closed field lines occasionally can escape into 
the cusp region especially during substorms [Delcourt and Sauvaud, 1999; Blake, 1999; 
Spence et al, 1999]. These ions can subsequently leak into the magnetosheath along 
the reconnected field lines [e.g., Scholer et al, 1981].  However, as we had reported 
in paper I, Polar was on magnetosheath field lines nearly all the time connecting to 
the solar wind, not open magnetospheric regions (cusp, mantle, lobe, etc.) during this 
event. Therefore, the path for such a leakage process was not present in this Polar orbit. 
Accordingly, cusp energetic ions whether they were energetic ions escaping from ring 
current/plasmas sheet or solar wind ions locally accelerated in the cusp [Chen and Fritz, 
1999] would not escape into the magnetosheath to be detected by Polar. Furthermore, 
we note that Polar never traversed through the cusp according to the electron data and 
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there is no direct evidence of particle acceleration in the cusp for this event. Contrary to 
the Chen and Fritz's proposal of cusp energetic ions being the source of magnetosheath 
energetic ions, we suggested in paper I that these bow shock accelerated magnetosheath 
energetic ions (up to 200 keV/e) are at times a plausible source of cusp energetic ions 
[Chang et al, 2000]. 

The detection of MeV magnetosheath ions by the Polar CEPPAD instrument raises 
the question about their origin. For reasons described above, the above two acceleration 
and transport processes, namely, magnetospheric ion injection [e.g., Delcourt and 
Sauvaud, 1999] and cusp acceleration [Chen and Fritz, 1999], are implausibly the 
cause. Since the magnetosphere is full of MeV ions, magnetospheric leakage can be a 
candidate for those CEPPAD ions [Sibeck et al, 1987]. However, there is some evidence 
against this argument.  1.  CEPPAD ion spectrum below 200 keV agrees very well 
with CAMMICE ion spectrum and CEPPAD ions above 200 keV simply extends the 
energetic ion spectrum to form a power-law tail. The entire energetic ion spectrum 
is continuous. This may indicate a unique source region since bow shock ion spectra 
produced by the Fermi process and originating from the magnetospheric leakage are 
quite different [Möbius et al, 1986].  Because the lower energy portion of energetic 
ion spectrum comes from the shock and very few energetic (up to 200 keV/e) ions 
comes from the magnetosphere, it is very possible that the higher energy portion of the 
spectrum also come from the shock, not the magnetosphere. 2. The leakage process 
has a difficulty to explain the anticorrelation between the IMF cone angle and the 
magnetosheath energetic ion fluxes at each CEPPAD energy channel from 40 keV to 1 
MeV. Since Polar was at mid-latitude magnetosheath on magnetic field lines threading 
the equatorial magnetosheath region where ions escaping from the magnetosphere would 
immediately reach, a part of these ions would readily reach Polar along field lines. 
Because magnetospheric leakage continuously occurs at the magnetopause [Sibeck et al, 
1987], Polar would observe magnetospheric ions persistently during this event. These 
ions are expected to show no correlation with the IMF cone angle just like those He+ 

ions detected by CAMMICE. This is not the case for the 40-1000 keV ions detected by 
the CEPPAD instrument which behave very similar to the 40-200 keV/e H+, He+2, and 
0>+2 ions detected by CAMMICE. 

The above two points however suggest that the source of MeV magnetosheath 
ions is the bow shock diffuse ions. In addition, results of cross-correlation analysis for 
the CEPPAD energetic ion flux and IMF cone angle show features identical to those 
for the CAMMICE ion flux of solar wind origin in our previous study. For example, 
correlation coefficient shows a sharp transition from no correlation at ~20 keV to strong 
anticorrelation at ~40 keV and beyond. This energy threshold for the anticorrelation is 
identical to the energy at the spectral break of magnetosheath ion spectrum. The time 
delay for best anticorrelation at each ion energy from 40 keV to 1 MeV is nearly the 
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same at about 36 min. This lag is consistent with the estimated solar wind propagation 
time ~29 min during this event (see paper I) plus the growth time for bow shock 
diffuse ions ~10 min [e.g., Scholer et a/., 1980; Mitchell and Roelof, 1983]. This single 
acceleration time, ~7 min, for ions from 40 keV to 1 MeV might appear to be an 
implausible result of a simple Fermi process from a thermal distribution. There are 
three possible explanations that are described in details later. 

In addition to the above evidence, an important piece of evidence for the bow 
shock source is demonstrated in Figure 13. Magnetosheath energetic ion spectrum and 
simultaneously observed bow shock ion spectrum agree very well up to ~600 keV and 
the spectral trend of the bow shock ions also agrees very well with the magnetosheath 
spectrum above this energy. This flux comparison has significance because Interball 
and Polar are arguably connected by the magnetic field line during this upstream 
interval.  Energetic ions at the quasi-parallel bow shock region that is magnetically 
connected to Interball can simply follow the field line and reach the Polar's location in 
the magnetosheath. Using Liouville's theorem, the distribution function is conserved 
along particle's trajectory provided there are no collisions. As long as particle energy 
is the same at the two regions, flux remains the same. However, particle spectra were 
often compared in two different regions in the literature. Without establishing the link 
between two regions, the Geotail and Polar ion flux comparison by Chen and Fritz [1999] 
for this storm event can be wrong. In that example, Geotail was located in the duskside 
and nightside of the equatorial magnetosheath and Polar was at the mid-latitude 
dayside magnetosheath near local noon. Under the solar wind and IMF conditions for 
this event, the above two regions are very likely on quite different magnetic field lines 
and streamlines. Therefore, Geotail data convey no information concerning the Polar 
observations of magnetosheath energetic ions. 

The fact that bow shock and magnetosheath ion spectra match so well and MeV 
magnetosheath ion flux is anticorrelated with the IMF cone angle implies the presence of 
MeV ions at the shock with the same flux level as the magnetosheath ions. Diffuse ions 
with energies up to 1 MeV are all accelerated at the shock with the same growth time 
of ~7 min. As pointed out before, this unique acceleration time may argue against the 
Fermi mechanism and 7 min seems too short to accelerate ions to MeV. However, three 
factors may possibly explain this unique acceleration time. First, seed population: as 
shown in Figure 13, energetic ion fluxes measured by Wind/3DP at about LI get closer 
to the bow shock and magnetosheath values as ion energy increases. The intensity and 
spectral shape for the energetic ions persisted in the solar wind throughout the whole 
interval from 0840 to 1200 UT, regardless of the IMF orientation. This indicates that 
these ions are not bow shock diffuse ions escaping upstream. Otherwise, Wind would 
have detected higher/lower energetic ion fluxes when IMF cone angle was small/large 
and Wind was connected/disconnected to the quasi-parallel bow shock during this 
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event. In fact, these energetic ions in the solar wind can become the seed population 
for the Fermi process and accelerating these ions to MeV requires much shorter time 
than accelerating keV solar wind ions to MeV [e.g., Ellison, 1987]. Although in general 
magnetospheric leakage can also be another source of the seed population [e.g., Sarris 
et al, 1976], results from plasma composition measurements and the cross-correlation 
analysis demonstrated in our previous and present work argue against this possibility. 
Second, acceleration efficiency: the shock Alfven Mach number during this event was 
large and Fermi acceleration became much more efficient [Scholer et al, 1999]. Third, 
heavy ions: it is well known that heavy ions in the solar wind can be accelerated 
to about 150 keV/e through the Fermi process at the quasi-parallel bow shock [e.g., 
Ipavich et al, 1981; Galvin et al, 1984; Desai et al, 2000]. Therefore, high charge state 
heavy ions can contribute energy exceeding 1 MeV. As shown in Figure 14, He+2 and 
0>+2 ions observed by CAMMICE can possibly comprise the CEPPAD energetic ion 
spectrum above 200 keV. It would take much less time accelerating 0+6 ions to 200 
keV/e or 1.2 MeV than accelerating H+ ions to 1 MeV. 

In reality, solar wind energetic ions as a seed population and bow shock accelerated 
heavy ions both might contribute to the MeV magnetosheath ions observed by 
CEPPAD. Because of the lack of composition measurements above 200 keV/e in the 
Polar instruments, we cannot discern the heavy ion contribution. However, CAMMICE 
direct event data suggest that heavy ion (M > 20) contribution is insignificant in the 
DCR channel during the upstream event, 1101-1142 UT. If the contribution from the 
solar energetic ion source to MeV ions dominates, the energy limit imposed by the 
boundary condition in the Fermi model of shock acceleration may need to be modified. 
It is generally assumed that Fermi process can produce ion energy up to about 150 
keV/e [e.g., Ipavich et al, 1981; Lee, 1982; Desai et al, 2000]. As shown in this event, 
ions are accelerated to 200 keV/e and beyond at the shock. In addition, recent Wind 
statistics shows more than 30% of upstream events demonstrating a power-law spectrum 
extending above 150 keV/e with ion composition similar,, to that in the solar wind 
[Desai et al, 2000]. These results suggest that the so called "Fermi limit" in the shock 
literature may require modification. As noted, Fermi mechanism by itself for a plane, 
infinite shock produces a power-law distribution [Lee, 1982]. A loss mechanism, such 
as the upstream escape boundary, cross field diffusion, disconnection of field lines from 
the shock, or a combination of these is often included in the Fermi model to reproduce 
the observed exponential distribution from the ISEE spacecraft [e.g., Lee, 1982]. For 
this upstream event, more realistic boundary conditions in the form of realistic seed 
population have to be considered in the Fermi shock model to reproduce the observed 
bow shock ion spectrum. 
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4. Summary 

During the May 4, 1998, storm event, Wind, Interball-Tail, and Polar observed 
plasmas of great intensity.   In our previous study [Chang et al, 2000] (paper I), 
magnetosheath ions were examined up to the CAMMICE maximum detection energy at 
~200 keV/e. It was concluded that energetic ions of solar wind origin came from the 
quasi-parallel bow shock and those of ionospheric origin came from the magnetosphere. 
In this study, we extend the magnetosheath ion energy to 1 MeV detected by the 
CEPPAD instrument and provide new evidence for the bow shock source by comparing 
ion fluxes simultaneously measured in the magnetosheath and at the bow shock source 
region. Ion spectrum observed by Polar in the mid-latitude dayside magnetosheath is 
continuous and demonstrates a At-like distribution in the energy range from 40 keV to 
1 MeV which includes a power-law tail above 200 keV. Cross-correlation analysis of 
magnetosheath energetic ions observed by CEPPAD and IMF cone angle show results 
identical to those in our previous analysis for lower energy ions observed by CAMMICE. 
Magnetosheath ion fluxes above 40 keV are strongly anticorrelated with the cone angle 
with a time delay consistent with the solar wind propagation time and growth time 
of upstream diffuse ions. Below this energy, anticorrelation disappears. This energy 
threshold for the anticorrelation relationship is the same as the energy of the spectral 
break in the ion spectrum.  Among various acceleration and transport mechanisms, 
such as bow shock acceleration, magnetospheric leakage, substorm injections, and local 
acceleration in the cusp, our previous and present analysis of the plasma and field 
data from the above three spacecraft strongly favors the bow shock acceleration for 
ions of solar wind origin. A causal relationship between bow shock accelerated ions 
and magnetosheath energetic ions is further demonstrated as bow shock energetic ion 
spectrum from Interball matches extraordinarily well the magnetosheath energetic ion 
spectrum from Polar. The e-folding energy of the diffuse ion spectra (40 keV/e) is higher 
than the typical value of ~20 keV/e as expected for large shock Alfven Mach number 
and.very high solar wind speed in this event [Scholer et hl, 1999]. The acceleration 
region is at the quasi-parallel bow shock although seed population and heavy ion 
contribution have yet to be determined. This shock acceleration event producing ion 
energy above 200 keV/e is not unique. As demonstrated in the recent Wind statistics, 
more than 30% of upstream events show a power-law spectrum extending above 150 
keV/e [Desai et al, 2000]. This study and the Wind statistics suggest that the so 
called "Fermi limit" may require modification. The bow shock source of magnetosheath 
energetic ions for this event strongly supports the bow shock model of cusp energetic 
ions [Chang et al, 1998] and is inconsistent with the model of local acceleration in the 
cusp [Chen et al, 1998]. 
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